Mast prop results

The forepeak was a area that for Peter was not negotiable. It is some 12′ ( m) in length, with an alloy plate compartmenting collision bulkhead including a water-tight alloy hatch separating it from the living areas. This accommodates all six sails needing stowage here, with the genoa on a roller furler and the main permanently bent on. Also sharing the forepeak are seven 100–120 m warps, essential to high latitude and Patagonian cruising; all working sheets and lines; a trolley cart; a parachute sea anchor and a Jordon series drogue; racks for long poles, oars, and a spare roller furler section; spare anchors including a replacement Rocna 55 (121 lb) bower; and all the other things that live in fo’c’s’les. The two main anchor rodes are 100 and 50 meters respectively of 12 mm chain, plus 50 and 100 meters respectively of 8-plait polyester spliced to the chain in order to pass over the chain wheels and through the spurling pipe.

First, figure out how big a wind generator you are willing to tackle, either commercial or home-brewed. There is really only one important measure of windmill size...the swept area. That's how many square feet (or meters, if you are into that sort of thing) of area the windmill's blades cover during a rotation. The formula for swept area is Pi r^2, where Pi is and r is the radius of your prop. The available power from the wind increases dramatically with the swept area...but so do the stresses on your blades, tower, bearings, tail. More stress means stronger engineering and materials are required, and a much larger, more complicated and expensive project.

Mast prop results

mast prop results

Media:

mast prop resultsmast prop resultsmast prop resultsmast prop resultsmast prop results